博客
关于我
[bzoj1059][二分图匹配]矩阵游戏
阅读量:121 次
发布时间:2019-02-26

本文共 2442 字,大约阅读时间需要 8 分钟。

为了解决这个问题,我们需要判断是否可以通过行和列交换,使得一个N×N的二进制矩阵的主对角线全部为黑色(即1)。这个问题可以通过构建二分图并寻找完美匹配来解决。

方法思路

  • 问题分析:我们需要将矩阵的每一行与某一列匹配,使得主对角线上的所有格子都是1。这个问题可以转化为二分图匹配问题。
  • 二分图匹配:构建一个二分图,其中左边的节点代表行,右边的节点代表列。边的存在条件是矩阵中对应的位置为1。
  • Hopcroft-Karp算法:使用这个算法来寻找二分图的最大匹配。如果最大匹配的大小等于N,则说明存在完美匹配,问题有解。
  • 解决代码

    import sysfrom collections import dequedef main():    input = sys.stdin.read().split()    ptr = 0    T = int(input[ptr])    ptr += 1    for _ in range(T):        N = int(input[ptr])        ptr += 1        grid = []        for i in range(N):            row = list(map(int, input[ptr:ptr+N]))            ptr += N            grid.append(row)        # Construct bipartite graph        adj = [[] for _ in range(N+1)]  # 1-based indexing for rows and columns        for i in range(N):            for j in range(N):                if grid[i][j] == 1:                    adj[i+1].append(j+1)        # Hopcroft-Karp algorithm        pair_u = [0] * (N + 1)        pair_v = [0] * (N + 1)        dist = [0] * (N + 1)        result = 0                def bfs():            queue = deque()            for u in range(1, N+1):                if pair_u[u] == 0:                    dist[u] = 0                    queue.append(u)                else:                    dist[u] = float('inf')            dist[0] = float('inf')            while queue:                u = queue.popleft()                if u != 0:                    for v in adj[u]:                        if dist[pair_v[v]] == float('inf'):                            dist[pair_v[v]] = dist[u] + 1                            queue.append(pair_v[v])            return dist[0] != float('inf')                def dfs(u):            if u != 0:                for v in adj[u]:                    if dist[pair_v[v]] == dist[u] + 1:                        if dfs(pair_v[v]):                            pair_u[u] = v                            pair_v[v] = u                            return True                dist[u] = float('inf')                return False            return True                while bfs():            for u in range(1, N+1):                if pair_u[u] == 0:                    if dfs(u):                        result += 1        if result == N:            print("Yes")        else:            print("No")if __name__ == "__main__":    main()

    代码解释

  • 输入处理:读取输入数据,解析矩阵。
  • 构建二分图邻接表:将矩阵转换为二分图的邻接表。
  • Hopcroft-Karp算法:使用广度优先搜索(BFS)和深度优先搜索(DFS)来寻找最大匹配。
  • 判断结果:检查最大匹配的大小是否等于N,决定输出"Yes"或"No"。
  • 通过这种方法,我们可以高效地判断矩阵是否可以通过行和列交换使主对角线全部为黑色。

    转载地址:http://xdmu.baihongyu.com/

    你可能感兴趣的文章
    node.js+react写的一个登录注册 demo测试
    查看>>
    Node.js中环境变量process.env详解
    查看>>
    Node.js之async_hooks
    查看>>
    Node.js升级工具n
    查看>>
    Node.js卸载超详细步骤(附图文讲解)
    查看>>
    Node.js基于Express框架搭建一个简单的注册登录Web功能
    查看>>
    Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
    查看>>
    Node.js安装及环境配置之Windows篇
    查看>>
    Node.js安装和入门 - 2行代码让你能够启动一个Server
    查看>>
    node.js安装方法
    查看>>
    Node.js官网无法正常访问时安装NodeJS的方法
    查看>>
    Node.js的循环与异步问题
    查看>>
    Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
    查看>>
    nodejs + socket.io 同时使用http 和 https
    查看>>
    NodeJS @kubernetes/client-node连接到kubernetes集群的方法
    查看>>
    Nodejs express 获取url参数,post参数的三种方式
    查看>>
    nodejs http小爬虫
    查看>>
    nodejs libararies
    查看>>
    nodejs npm常用命令
    查看>>
    nodejs npm常用命令
    查看>>